Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 3(5): 1651-62, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23684611

RESUMO

The ATM- and Rad3-related (ATR) kinase is a master regulator of the DNA damage response, yet how ATR is activated toward different substrates is still poorly understood. Here, we show that ATR phosphorylates Chk1 and RPA32 through distinct mechanisms at replication-associated DNA double-stranded breaks (DSBs). In contrast to the rapid phosphorylation of Chk1, RPA32 is progressively phosphorylated by ATR at Ser33 during DSB resection prior to the phosphorylation of Ser4/Ser8 by DNA-PKcs. Surprisingly, despite its reliance on ATR and TopBP1, substantial RPA32 Ser33 phosphorylation occurs in a Rad17-independent but Nbs1-dependent manner in vivo and in vitro. Importantly, the role of Nbs1 in RPA32 phosphorylation can be separated from ATM activation and DSB resection, and it is dependent upon the interaction of Nbs1 with RPA. An Nbs1 mutant that is unable to bind RPA fails to support proper recovery of collapsed replication forks, suggesting that the Nbs1-mediated mode of ATR activation is important for the repair of replication-associated DSBs.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Quebras de DNA de Cadeia Dupla , Replicação do DNA , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica , Proteínas Quinases , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína de Replicação A/metabolismo
2.
J Biol Chem ; 282(23): 16820-8, 2007 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-17416930

RESUMO

Human fibroblasts in culture obtain deoxynucleotides by de novo ribonucleotide reduction or by salvage of deoxynucleosides. In cycling cells the de novo pathway dominates, but in quiescent cells the salvage pathway becomes important. Two forms of active mammalian ribonucleotide reductases are known. Each form contains the catalytic R1 protein, but the two differ with respect to the second protein (R2 or p53R2). R2 is cell cycle-regulated, degraded during mitosis, and absent from quiescent cells. The recently discovered p53-inducible p53R2 was proposed to be linked to DNA repair processes. The protein is not cell cycle-regulated and can provide deoxynucleotides to quiescent mouse fibroblasts. Here we investigate the in situ activities of the R1-p53R2 complex and two other enzymes of the de novo pathway, dCMP deaminase and thymidylate synthase, in confluent quiescent serum-starved human fibroblasts in experiments with [5-(3)H]cytidine, [6-(3)H]deoxycytidine, and [C(3)H(3)]thymidine. These cells had increased their content of p53R2 2-fold and lacked R2. From isotope incorporation, we conclude that they have a complete de novo pathway for deoxynucleotide synthesis, including thymidylate synthesis. During quiescence, incorporation of deoxynucleotides into DNA was very low. Deoxynucleotides were instead degraded to deoxynucleosides and exported into the medium as deoxycytidine, deoxyuridine, and thymidine. The rate of export was surprisingly high, 25% of that in cycling cells. Total ribonucleotide reduction in quiescent cells amounted to only 2-3% of cycling cells. We suggest that in quiescent cells an important function of p53R2 is to provide deoxynucleotides for mitochondrial DNA replication.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Dano ao DNA , Desoxirribonucleotídeos/metabolismo , Ribonucleotídeo Redutases/fisiologia , Western Blotting , Linhagem Celular , DCMP Desaminase/metabolismo , Reparo do DNA , Humanos , Timidilato Sintase/metabolismo
3.
J Biol Chem ; 281(12): 7834-41, 2006 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-16436374

RESUMO

Ribonucleotide reductase (RNR) provides the cell with a balanced supply of deoxyribonucleoside triphosphates (dNTP) for DNA synthesis. In budding yeast DNA damage leads to an up-regulation of RNR activity and an increase in dNTP pools, which are essential for survival. Mammalian cells contain three non-identical subunits of RNR; that is, one homodimeric large subunit, R1, carrying the catalytic site and two variants of the homodimeric small subunit, R2 and the p53-inducible p53R2, each containing a tyrosyl free radical essential for catalysis. S-phase-specific DNA replication is supported by an RNR consisting of the R1 and R2 subunits. In contrast, DNA damage induces expression of the R1 and the p53R2 subunits. We now show that neither logarithmically growing nor G(o)/G1-synchronized mammalian cells show any major increase in their dNTP pools after DNA damage. However, non-dividing fibroblasts expressing the p53R2 protein, but not the R2 protein, have reduced dNTP levels if exposed to the RNR-specific inhibitor hydroxyurea, strongly indicating that there is ribonucleotide reduction in resting cells. The slow, 4-fold increase in p53R2 protein expression after DNA damage results in a less than 2-fold increase in the dNTP pools in G(o)/G1 cells, where the pools are about 5% that of the size of the pools in S-phase cells. Our results emphasize the importance of the low constitutive levels of p53R2 in mammalian cells, which together with low levels of R1 protein may be essential for the supply of dNTPs for basal levels of DNA repair and mitochondrial DNA synthesis in G(o)/G1 cells.


Assuntos
Dano ao DNA , Desoxirribonucleotídeos/química , Ribonucleotídeos/química , Animais , Catálise , Ciclo Celular , DNA/química , DNA/metabolismo , Reparo do DNA , Replicação do DNA , DNA Mitocondrial/metabolismo , Relação Dose-Resposta a Droga , Fibroblastos/metabolismo , Citometria de Fluxo , Radicais Livres , Fase G1 , Hidroxiureia/química , Immunoblotting , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Células NIH 3T3 , Ligação Proteica , Proteínas Recombinantes/química , Fase de Repouso do Ciclo Celular , Ribonucleotídeo Redutases/química , Fase S , Saccharomycetales , Fatores de Tempo , Regulação para Cima
4.
J Biol Chem ; 281(3): 1778-83, 2006 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16317005

RESUMO

Ribonucleotide reductase (RNR) is an essential enzyme that provides the cell with a balanced supply of deoxyribonucleoside triphosphates for DNA replication and repair. Mutations that affect the regulation of RNR in yeast and mammalian cells can lead to genetic abnormalities and cell death. We have expressed and purified the components of the RNR system in fission yeast, the large subunit Cdc22p, the small subunit Suc22p, and the replication inhibitor Spd1p. It was proposed (Liu, C., Powell, K. A., Mundt, K., Wu, L., Carr, A. M., and Caspari, T. (2003) Genes Dev. 17, 1130-1140) that Spd1 is an RNR inhibitor, acting by anchoring the Suc22p inside the nucleus during G1 phase. Using in vitro assays with highly purified proteins we have demonstrated that Spd1 indeed is a very efficient inhibitor of fission yeast RNR, but acting on Cdc22p. Furthermore, biosensor technique showed that Spd1p binds to the Cdc22p with a KD of 2.4 microM, whereas the affinity to Suc22p is negligible. Therefore, Spd1p inhibits fission yeast RNR activity by interacting with the Cdc22p. Similar to the situation in budding yeast, logarithmically growing fission yeast increases the dNTP pools 2-fold after 3 h of incubation in the UV mimetic 4-nitroquinoline-N-oxide. This increase is smaller than the increase observed in budding yeast but of the same order as the dNTP pool increase when synchronous Schizosaccharomyces pombe cdc10 cells are going from G1 to S-phase.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Desoxirribonucleotídeos/metabolismo , Ribonucleotídeo Redutases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/genética , Proteínas de Ciclo Celular/genética , Clonagem Molecular , Replicação do DNA , Escherichia coli/genética , Fase G1 , Cinética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ribonucleotídeo Redutases/antagonistas & inibidores , Ribonucleotídeo Redutases/genética , Schizosaccharomyces/citologia , Schizosaccharomyces/enzimologia , Proteínas de Schizosaccharomyces pombe/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...